James Jeans (1877 – 1946)
British physicist, astronomer and mathematician.
From the intrinsic evidence of his creation, the Great Architect of the Universe now begins to appear as a pure mathematician.
Heisenberg finds that facts of observation lead uniquely and inevitably to the theoretical structure known as matrix mechanics. This shows that the total radiation in any region of empty space can change only by a single complete quantum at a time. Thus not only in the photo-electric phenomenon, but in all other transfers of energy through space, energy is always transferred by complete quanta; fractions of a quantum can never occur. This brings atomicity into our picture of radiation just as definitely as the discovery of the electron and its standard charge brought atomicity into our picture of matter and of electricity.
This spectrum is of the type known in spectroscopy as a line-spectrum. Its appearance is that of a group of bright lines on a dark background, indicating that the radiation divides itself between a number of clearly defined frequencies, and that there is no radiation in between. Before Bohr's explanation appeared, these frequencies had been supposed to belong to some sort of vibration taking place in the hydrogen atom - like frequencies of the musical note which is heard when a bell or piano wire is made to vibrate. It now became clear that they had an entirely different origin. The energy exhibited in the spectrum was not liberated by a vibration, or any kind of continuous motion, but by the sudden jump of an electron to an orbit of lower energy, and its frequency was determined by the compulsion put upon it to form a single quantum.
Superficially at least the forces of electricity and magnetism seem to present the same kind of problem as gravitation. Experiment shows that two electrically charged bodies attract one another (or repel if their charges are of the same kind) with a force which conforms to the same mathematical law as the force of gravitation - both forces fall off inversely as the inverse square of the distance. The same is true of the magnetic force also; two magnetic poles attract or repel one another with a force which again follows the law of the inverse square of the distance.
Actually the situation is even more complicated, since a separate tentacle picture is needed for each speed of motion of the electron, the speed being measured relative to the suspended magnet or other object on which the moving electron is to act. ...When the electron is at rest, the tentacles stick out equally in all directions. But an electron which is at rest relative to one magnet may be in motion relative to another, and to discuss the action of the electron on this second magnet we must picture it as having a belt of tentacles round its waist. This shows that we must have a different picture for every speed of relative motion, so that the total number of pictures is infinite, and we cannot form the picture we need unless we know the speed of the electron relative to the object it is about to meet.
if a shower of electrons is shot on to a zinc sulfide screen, a number of flashes are produced - one for each electron - and we may picture the electrons as bullet-like projectiles hitting a target. But if the same shower is made to pass near a suspended magnet, this is found to be deflected as the electrons go by. The electrons may now be pictured as octopus-like structures with tentacles or 'tubes of force' sticking out from it in every direction.
A similar situation occurred in astronomy, where the Newtonian law of gravitation had been found to predict the orbits of the outer planets with great accuracy, but had failed with the orbits of Mercury and Venus. The relativity theory of gravitation had provided the necessary modification of Newton's law, and in working out the details of the new theory, Einstein had utilized the fact that Newtonian law gave the right result at great distances from the sun. Heisenberg, confronted with a similar problem, was able to avail himself of the fact that the classical mechanics gave the right result at great distances from the atomic nucleus. Here, and here alone Heisenberg's theory made contact with the world of the older physics.
First we notice an investigation which Prof. Plank of Berlin published in 1899. His aim was that it should fit the observed facts of radiation, and show why the energy of bodies was not wholly transformed into radiation. ...his investigation seemed to show that continuity had to be given up, suggesting that in the last resort changes in the universe do not consist of continuous motions in space and time, but in some way are discontinuous.
Physics and philosophy are at most a few thousand years old, but probably have lives of thousands of millions of years stretching away in front of them. They are only just beginning to get under way...
Gravitational force is simple, and a thing by itself, as also are electric and magnetic forces as long as the electric and magnetic poles stand at rest. But as soon as motion comes into the picture, the whole situation is changed. Forces of new kinds come into play, for moving electric charges exert magnetic forces in addition to the electric forces they exert when at rest, while moving magnets exert electric forces in addition to the magnetic forces they exert while at rest. When the exact laws governing these intricate laws had been discovered by a great number of experimenters, Clerk Maxwell succeeded in expressing them in a mathematical form which was both simple and elegant.
At this time, space was supposed to be filled with an ether, a substance which might well serve, among other functions, to transmit forces across space. So long as such an ether could be called on, the transmission of force to a distance was easy to understand; it was like ringing a distant bell by pulling a bell-rope.
An extension of Plank's ideas, due to Prof. Niels Bohr of Copenhagen, went on to suggest that... the ultimate particles of matter would be seen to move not like railway trains running smoothly on tracks, but like kangaroos hopping about in a field.
For, for aught we know, or for aught that the new science can say to the contrary, the gods which play the part of fate to the atoms of our brains may be our own minds. Through these atoms our minds may perchance affect the motions of our bodies and so the state of the world around us. To-day science can no longer shut the door on this possibility; she has no longer any unanswerable arguments to bring against our innate conviction of free-will. On the other hand, she gives no hint as to what absence of determinism or causation may mean. If we, and nature in general, do not respond in a unique way to external stimuli, what determines the course of events? If anything at all, we are thrown back on determinism and causation; if nothing at all, how can anything ever occur? As I see it, we are unlikely to reach any definite conclusions on these questions until we have a better understanding of the true nature of time.
Then the theory of relativity came and explained the cause of the failure. Electric action requires time to travel from one point of space to another, the simplest instance of this being the finite speed of travel of light... Thus electromagnetic action may be said to travel through space and time jointly. But by filling space and space alone [excluding time] with an ether, the pictorial representations had all supposed a clear-cut distinction between space and time.
We saw that radiation cannot suitably be pictured as particles when it is traveling through space. There is a corresponding property for electrons; these should not be pictured as waves so long as they are traveling through empty space.
One must stand stiller than still.
The main result reached by the new theory was that the classical mechanics can be made to account for the whole range of spectral phenomena, provided entirely new meanings are given to such symbols as p and q which had hitherto been taken to describe the position and motion of the electron. ...The most significant of the new properties is that the product pq is no longer the same as the product qp - in other words the order in which the two factors are multiplied together is no longer a matter of indifference. The difference between pq and qp is found to be always the same, being Plank's constant h multiplied by a numerical multiplier.
Bohr had... discovered that the frequencies corresponding to very large integers could be calculated accurately from the classical mechanics; they were simply the number of times that an ordinary electron would complete the circuit of its orbit in one second when it was at a very great distance from the nucleus of the atom to which it belonged. This could only mean that when an electron receded to a great distance from the nucleus of its atom, it not only assumed the properties of an ordinary electron, but also behaved as directed by the classical mechanics. Yet the classical mechanics failed completely for the calculation of frequencies corresponding to small orbits.
Before the quantum theory appeared, the principle of the uniformity of nature - that like causes produce like effects - had been accepted as a universal and indisputable fact of science. As soon as the atomicity of radiation became established, this principle had to be discarded.
Now these three concepts form the foundation-stones of the philosophy of materialism and determinism to which the physics of the nineteenth century seemed to lead. Thus, as soon as any one of the three has to be rejected, the philosophical implications of physics undergo a great change; the mechanical age has passed, both in physics and philosophy, and materialism and determinism again become open questions...