Thursday, July 18, 2024 Text is available under the CC BY-SA 3.0 licence.

James Jeans

« All quotes from this author

In the interior of the atom, Bohr had tried the plan of retaining the particle-electron and modifying the classical mechanics. Heisenberg took the opposite course, his procedure amounting in effect to retaining the classical mechanics, at least in form, and modifying the electron. Actually, the electron dropped out all together, because it exists only as a matter of inference and not of direct observation. For the same reason, the new theory contains no mention of atoms, nuclei, protons, or of electricity in any shape or form. The existences of all these are matters of inference, and Heisenberg's purely mathematical theory could no more make contact with them than with the efficiency of a turbine or with the price of wheat.

James Jeans

» James Jeans - all quotes »

Tags: James Jeans Quotes, Authors starting by J

Similar quotes


Bohr had... discovered that the frequencies corresponding to very large integers could be calculated accurately from the classical mechanics; they were simply the number of times that an ordinary electron would complete the circuit of its orbit in one second when it was at a very great distance from the nucleus of the atom to which it belonged. This could only mean that when an electron receded to a great distance from the nucleus of its atom, it not only assumed the properties of an ordinary electron, but also behaved as directed by the classical mechanics. Yet the classical mechanics failed completely for the calculation of frequencies corresponding to small orbits.

James Jeans

Heisenberg's name will always be associated with his theory of quantum mechanics, published in 1925, when he was only 23 years old. For this theory and the applications of it which resulted especially in the discovery of allotropic forms of hydrogen, Heisenberg was awarded the Nobel Prize for Physics for 1932.
His new theory was based only on what can be observed, that is to say, on the radiation emitted by the atom. We cannot, he said, always assign to an electron a position in space at a given time, nor follow it in its orbit, so that we cannot assume that the planetary orbits postulated by Niels Bohr actually exist. Mechanical quantities, such as position, velocity, etc. should be represented, not by ordinary numbers, but by abstract mathematical structures called "matrices" and he formulated his new theory in terms of matrix equations.

Werner Heisenberg

Precisely similar ideas are applicable to the molecules that form the air in a room. ...The classical mechanics now predicts that the whole energy of motion will be changed into radiation [heat], so that the molecules will shortly be found lying at rest on the floor... In actual fact they continue to move with undiminished energy, forming a perpetual-motion machine in defiance of classical mechanics. ...We have passed from one to another of three worlds... from the man-sized world to the world of the electron.

James Jeans

A similar situation occurred in astronomy, where the Newtonian law of gravitation had been found to predict the orbits of the outer planets with great accuracy, but had failed with the orbits of Mercury and Venus. The relativity theory of gravitation had provided the necessary modification of Newton's law, and in working out the details of the new theory, Einstein had utilized the fact that Newtonian law gave the right result at great distances from the sun. Heisenberg, confronted with a similar problem, was able to avail himself of the fact that the classical mechanics gave the right result at great distances from the atomic nucleus. Here, and here alone Heisenberg's theory made contact with the world of the older physics.

James Jeans

Heisenberg finds that facts of observation lead uniquely and inevitably to the theoretical structure known as matrix mechanics. This shows that the total radiation in any region of empty space can change only by a single complete quantum at a time. Thus not only in the photo-electric phenomenon, but in all other transfers of energy through space, energy is always transferred by complete quanta; fractions of a quantum can never occur. This brings atomicity into our picture of radiation just as definitely as the discovery of the electron and its standard charge brought atomicity into our picture of matter and of electricity.

James Jeans
© 2009–2013Quotes Privacy Policy | Contact