Heisenberg finds that facts of observation lead uniquely and inevitably to the theoretical structure known as matrix mechanics. This shows that the total radiation in any region of empty space can change only by a single complete quantum at a time. Thus not only in the photo-electric phenomenon, but in all other transfers of energy through space, energy is always transferred by complete quanta; fractions of a quantum can never occur. This brings atomicity into our picture of radiation just as definitely as the discovery of the electron and its standard charge brought atomicity into our picture of matter and of electricity.
James Jeans
The classical mechanics had envisaged the world constructed of matter and radiation, the matter consisting of atoms and the radiation of waves. Plank's theory called for an atomicity of radiation similar to that which was so well established for matter. It supposed that radiation was not discharged from matter in a steady stream like water from a hose, but rather like lead from a machine-gun; it came off in separate chunks which Plank called quanta. This... carried tremendous philosophical consequences.
James Jeans
Heisenberg's name will always be associated with his theory of quantum mechanics, published in 1925, when he was only 23 years old. For this theory and the applications of it which resulted especially in the discovery of allotropic forms of hydrogen, Heisenberg was awarded the Nobel Prize for Physics for 1932.
His new theory was based only on what can be observed, that is to say, on the radiation emitted by the atom. We cannot, he said, always assign to an electron a position in space at a given time, nor follow it in its orbit, so that we cannot assume that the planetary orbits postulated by Niels Bohr actually exist. Mechanical quantities, such as position, velocity, etc. should be represented, not by ordinary numbers, but by abstract mathematical structures called "matrices" and he formulated his new theory in terms of matrix equations.Werner Heisenberg
Before the quantum theory appeared, the principle of the uniformity of nature - that like causes produce like effects - had been accepted as a universal and indisputable fact of science. As soon as the atomicity of radiation became established, this principle had to be discarded.
James Jeans
This spectrum is of the type known in spectroscopy as a line-spectrum. Its appearance is that of a group of bright lines on a dark background, indicating that the radiation divides itself between a number of clearly defined frequencies, and that there is no radiation in between. Before Bohr's explanation appeared, these frequencies had been supposed to belong to some sort of vibration taking place in the hydrogen atom - like frequencies of the musical note which is heard when a bell or piano wire is made to vibrate. It now became clear that they had an entirely different origin. The energy exhibited in the spectrum was not liberated by a vibration, or any kind of continuous motion, but by the sudden jump of an electron to an orbit of lower energy, and its frequency was determined by the compulsion put upon it to form a single quantum.
James Jeans
First we notice an investigation which Prof. Plank of Berlin published in 1899. His aim was that it should fit the observed facts of radiation, and show why the energy of bodies was not wholly transformed into radiation. ...his investigation seemed to show that continuity had to be given up, suggesting that in the last resort changes in the universe do not consist of continuous motions in space and time, but in some way are discontinuous.
James Jeans
Jeans, James
Jeffers, Robinson
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z