First we notice an investigation which Prof. Plank of Berlin published in 1899. His aim was that it should fit the observed facts of radiation, and show why the energy of bodies was not wholly transformed into radiation. ...his investigation seemed to show that continuity had to be given up, suggesting that in the last resort changes in the universe do not consist of continuous motions in space and time, but in some way are discontinuous.
James Jeans
The classical mechanics had envisaged the world constructed of matter and radiation, the matter consisting of atoms and the radiation of waves. Plank's theory called for an atomicity of radiation similar to that which was so well established for matter. It supposed that radiation was not discharged from matter in a steady stream like water from a hose, but rather like lead from a machine-gun; it came off in separate chunks which Plank called quanta. This... carried tremendous philosophical consequences.
James Jeans
Heisenberg finds that facts of observation lead uniquely and inevitably to the theoretical structure known as matrix mechanics. This shows that the total radiation in any region of empty space can change only by a single complete quantum at a time. Thus not only in the photo-electric phenomenon, but in all other transfers of energy through space, energy is always transferred by complete quanta; fractions of a quantum can never occur. This brings atomicity into our picture of radiation just as definitely as the discovery of the electron and its standard charge brought atomicity into our picture of matter and of electricity.
James Jeans
In every previous application of the quantum law, Plank's law, that the energy is h [Plank's constant] times the frequency, had been used to deduce the energy of a quantum when the frequency of the radiation was already known. In the present case the formula was used the other way; the energy of the emitted photon was known to begin with, and the formula was utilized to deduce its frequency. The frequencies calculated in this way are found to agree completely and exactly with those of the spectrum of hydrogen.
James Jeans
This spectrum is of the type known in spectroscopy as a line-spectrum. Its appearance is that of a group of bright lines on a dark background, indicating that the radiation divides itself between a number of clearly defined frequencies, and that there is no radiation in between. Before Bohr's explanation appeared, these frequencies had been supposed to belong to some sort of vibration taking place in the hydrogen atom - like frequencies of the musical note which is heard when a bell or piano wire is made to vibrate. It now became clear that they had an entirely different origin. The energy exhibited in the spectrum was not liberated by a vibration, or any kind of continuous motion, but by the sudden jump of an electron to an orbit of lower energy, and its frequency was determined by the compulsion put upon it to form a single quantum.
James Jeans
Another conspicuous failure of classical mechanics was with one aspect of the problem of radiation. ...Imagine a crowd of steel balls rolling about on a steel floor. ...There must... be a steady leakage of energy from... causes, such as air resistance and the friction of the floor, so the balls will eventually lose energy, and, after no great length of time, will be found standing at rest on the floor. The energy of their motion seems to have been lost... most of it has been transformed into heat. The classical mechanics predicts that this must happen; it shows that all energy of motion, except possibly a minute fraction of the whole, must be transformed into heat whenever such a transformation is physically possible. It is because of this that perpetual-motion machines are a practical impossibility.
James Jeans
Jeans, James
Jeffers, Robinson
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z