This characteristic of modern experiments — that they consist principally of measurements — is so prominent, that the opinion seems to have got abroad, that in a few years all the great physical constants will have been approximately estimated, and that the only occupation which will then be left to men of science will be to carry on these measurements to another place of decimals. If this is really the state of things to which we are approaching, our Laboratory may perhaps become celebrated as a place of conscientious labour and consummate skill, but it will be out of place in the University, and ought rather to be classed with the other great workshops of our country, where equal ability is directed to more useful ends.
But we have no right to think thus of the unsearchable riches of creation, or of the untried fertility of those fresh minds into which these riches will continue to be poured. It may possibly be true that, in some of those fields of discovery which lie open to such rough observations as can be made without artificial methods, the great explorers of former times have appropriated most of what is valuable, and that the gleanings which remain are sought after, rather for their abstruseness, than for their intrinsic worth. But the history of science shews that even during the phase of her progress in which she devotes herself to improving the accuracy of the numerical measurement of quantities with which she has long been familiar, she is preparing the materials for the subjugation of the new regions, which would have remained unknown if she had been contented with the rough methods of her early pioneers. I might bring forward instances gathered from every branch of science, shewing how the labour of careful measurement has been rewarded by the discovery of new fields of research, and by the development of new scientific ideas. But the history of the science of terrestrial magnetism affords us a sufficient example of what may be done by experiments in concert, such as we hope some day to perform in our Laboratory.
--
Introductory Lecture on Experimental Physics held at Cambridge in October 1871, re-edited by W. D. Niven (2003) in Volume 2 of The Scientific Papers of James Clerk Maxwell, Courier Dover Publications, p. 241; this has sometimes been misquoted in a way which considerably alters its intent: "in a few years, all the great physical constants will have been approximately estimated, and … the only occupation which will then be left to the men of science will be to carry these measurement to another place of decimals."James Clerk Maxwell
» James Clerk Maxwell - all quotes »
Before entering into these details, however, it may be well to reply to the very natural question: What would be the use of such extreme refinement in the science of measurement? Very briefly and in general terms the answer would be that in this direction the greater part of all future discovery must lie. The more important fundamental laws and facts of physical science have all been discovered, and these are so firmly established that the possibility of their ever being supplanted in consequence of new discoveries is exceedingly remote. Nevertheless, it has been found that there are apparent exceptions to most of these laws, and this is particularly true when the observations are pushed to a limit, i.e., whenever the circumstances of experiment are such that extreme cases can be examined. Such examination almost surely leads, not to the overthrow of the law, but to the discovery of other facts and laws whose action produces the apparent exceptions.
As instances of such discoveries, which are in most cases due to the increasing order of accuracy made possible by improvements in measuring instruments, may be mentioned: first, the departure of actual gases from the simple laws of the so-called perfect gas, one of the practical results being the liquefaction of air and all known gases; second, the discovery of the velocity of light by astronomical means, depending on the accuracy of telescopes and of astronomical clocks; third, the determination of distances of stars and the orbits of double stars, which depend on measurements of the order of accuracy of one-tenth of a second—an angle which may be represented as that which a pin's head subtends at a distance of a mile. But perhaps the most striking of such instances are the discovery of a new planet by observations of the small irregularities noticed by Leverier in the motions of the planet Uranus, and the more recent brilliant discovery by Lord Rayleigh of a new element in the atmosphere through the minute but unexplained anomalies found in weighing a given volume of nitrogen. Many instances might be cited, but these will suffice to justify the statement that "our future discoveries must be looked for in the sixth place of decimals." It follows that every means which facilitates accuracy in measurement is a possible factor in a future discovery, and this will, I trust, be a sufficient excuse for bringing to your notice the various methods and results which form the subject matter of these lectures.Albert Abraham Michelson
Mind has come up with this brilliant way of looking at the world, science, but it can’t look at itself. Science has no place for the mind. The whole of our science is based upon empirical, repeatable experiments. Whereas thought is not in that category, you can’t take thought into a laboratory. The essential fact of our existence, perhaps the only fact of our existence – our own thought and perception is ruled off-side by the science it has invented. Science looks at the universe, doesn’t see itself there, doesn’t see mind there, so you have a world in which mind has no place. We are still no nearer to coming to terms with the actual dynamics of what consciousness is.
Alan Moore
The great attraction of cultural anthropology in the past was precisely that it seemed to offer such a richness of independent natural experiments; but unfortunately it is now clear that there has been a great deal of historical continuity and exchange among those "independent" experiments, most of which have felt the strong effect of contact with societies organized as modern states. More important, there has never been a human society with unlimited resources, of three sexes, or the power to read other people's minds, or to be transported great distances at the speed of light. How then are we to know the effect on human social organization and history of the need to scrabble for a living, or of the existence of males and females, or of the power to make our tongues drop manna and so to make the worse appear the better reason? A solution to the epistemological impotence of social theory has been to create a literature of imagination and logic in which the consequences of radical alterations in the conditions of human existence are deduced. It is the literature of science fiction. ... [S]cience fiction is the laboratory in which extraordinary social conditions, never possible in actuality, are used to illumine the social and historical norm. ... Science fiction stories are the Gedanken experiments of social science.
Richard Lewontin
But perhaps the rest of us could have separate classes in science appreciation, the wonder of science, scientific ways of thinking, and the history of scientific ideas, rather than laboratory experience.
Richard Dawkins
History of science played a very important role for me. Before I knew well how to do an experiment, I knew why Joliot has missed the neutron, why his wife missed the fission, why they succeeded in having artificial radioactivity, and even why they almost missed the other things, by doing very nice experiments, but didn't come to the conclusion. That is science. Science is doubt, is research. It is not something which is – and that is the danger of teaching – which is too academic and which the people explain you it is like the logic thing that comes out of the computer, which is not true. You have intuition, you have passion.
Georges Charpak
Maxwell, James Clerk
Maxwell, Neal A.
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z