These primitive propositions ... suffice to deduce all the properties of the numbers that we shall meet in the sequel. There is, however, an infinity of systems which satisfy the five primitive propositions. ... All systems which satisfy the five primitive propositions are in one-to-one correspondence with the natural numbers. The natural numbers are what one obtains by abstraction from all these systems; in other words, the natural numbers are the system which has all the properties and only those properties listed in the five primitive propositions
--
On what became knows as the Peano axioms, in "I fondamenti dell’aritmetica nel Formulario del 1898", in Opere Scelte Vol. III (1959), edited by Ugo Cassina, as quoted in "The Mathematical Philosophy of Giuseppe Peano" by Hubert C. Kennedy, in Philosophy of Science Vol. 30, No. 3 (July 1963)Giuseppe Peano
» Giuseppe Peano - all quotes »
That from the outset they expect or even impose all the properties of finite numbers upon the numbers in question, while on the other hand the infinite numbers, if they are to be considered in any form at all, must (in their contrast to the finite numbers) constitute an entirely new kind of number, whose nature is entirely dependent upon the nature of things and is an object of research, but not of our arbitrariness or prejudices.
Georg Cantor
A number of proposals have been advanced in recent years for the development of ‘general systems theory’ which, abstracting from properties peculiar to physical, biological, or social systems, would be applicable to all of them. We might well feel that, while the goal is laudable, systems of such diverse kinds could hardly be expected to have any nontrivial properties in common. Metaphor and analogy can be helpful, or they can be misleading. All depends on whether the similarities the metaphor captures are significant or superficial.
It may not be entirely vain, however, to search for common properties among diverse kinds of complex systems... The ideas of feedback and information provide a frame of reference for viewing a wide range of situations, just as do the ideas of evolution, of relativism, of axiomatic method, and of operationalism... hierarchic systems have some common properties that are independent of their specific content...Herbert Simon
The ideas set forth by organismic biologists during the first half of the twentieth century helped to give birth to a new way of thinking — "systems thinking" — in terms of connectedness, relationships, context. According to the systems view, the essential properties of an organism, or living system, are properties of the whole, which none of the parts have. They arise from the interactions and relationships among the parts. These properties are destroyed when the system is dissected, either physically or theoretically, into isolated elements. Although we can discern individual parts in any system, these parts are not isolated, and the nature of the whole is always different from the mere sum of its parts. The systems view of life is illustrated beautifully and abundantly in the writings of Paul Weiss, who brought systems concepts to the life sciences from his earlier studies of engineering and spent his whole life exploring and advocating a full organismic conception of biology.
Fritjof Capra
The ideas set forth by organismic biologists during the first half of the twentieth century helped to give birth to a new way of thinking — "systems thinking" — in terms of connectedness, relationships, context. According to the systems view, the essential properties of an organism, or living system, are properties of the whole, which none of the parts have. They arise from the interactions and relationships among the parts. These properties are destroyed when the system is dissected, either physically or theoretically, into isolated elements. Although we can discern individual parts in any system, these parts are not isolated, and the nature of the whole is always different from the mere sum of its parts. The systems view of life is illustrated beautifully and abundantly in the writings of Paul Weiss, who brought systems concepts to the life sciences from his earlier studies of engineering and spent his whole life exploring and advocating a full organismic conception of biology.
Fritjof Capra
Pure Mathematics is the class of all propositions of the form “p implies q,” where p and q are propositions containing one or more variables, the same in the two propositions, and neither p nor q contains any constants except logical constants. And logical constants are all notions definable in terms of the following: Implication, the relation of a term to a class of which it is a member, the notion of such that, the notion of relation, and such further notions as may be involved in the general notion of propositions of the above form. In addition to these, mathematics uses a notion which is not a constituent of the propositions which it considers, namely the notion of truth.
Bertrand Russell
Peano, Giuseppe
Pearce, Jonathan
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z