In science, conjecture drives both experiment and theory for it is only by forming conjectures (hypotheses) that we can make the direction of our experiments and theories informed. If such and such is true, then I should be able to do this experiment and look for this particular result or I should be able to find this theoretical formulation. Conversely, experiment and theory drive conjecture. One makes a startling observation or has a sudden insight and begins to speculate on its significance and implications and to draw possible conclusions (conjecture).
--
in his Nobel Lecture, December 7, 1996, Dawn of the Fullerenes: Experiment and ConjectureRobert Curl
One of my conjectures was solved in six months, a second in five years, a third in ten. But the basic conjecture, despite heroic efforts rewarded by two Fields Medals, remains a conjecture, now called MLC: the Mandelbrot Set is locally connected. The notion that these conjectures might have been reached by pure thought — with no picture — is simply inconceivable.
Benoit Mandelbrot
I have long believed that an experimentalist should not be unduely inhibited by theoretical untidyness. If he insists in having every last theoretical T crossed before he starts his research the chances are that he will never do a significant experiment. And the more significant and fundamental the experiment the more theoretical uncertainty may be tolerated. By contrast, the more important and difficult the experiment the more that experimental care is warranted. There is no point in attempting a half-hearted experiment with an inadequate apparatus.
Robert H. Dicke
Any physical theory is always provisional, in the sense that it is only a hypothesis: you can never prove it. No matter how many times the results of experiments agree with some theory, you can never be sure that the next time the result will not contradict the theory. On the other hand, you can disprove a theory by finding even a single observation that disagrees with the predictions of the theory. As philosopher of science Karl Popper has emphasized, a good theory is characterized by the fact that it makes a number of predictions that could in principle be disproved or falsified by observation. Each time new experiments are observed to agree with the predictions the theory survives, and our confidence in it is increased; but if ever a new observation is found to disagree, we have to abandon or modify the theory.
Stephen Hawking
There is one feature I notice that is generally missing in "cargo cult science." It's a kind of scientific integrity, a principle of scientific thought that corresponds to a kind of utter honesty — a kind of leaning over backwards. For example, if you're doing an experiment, you should report everything that you think might make it invalid — not only what you think is right about it; other causes that could possibly explain your results; and things you thought of that you've eliminated by some other experiment, and how they worked — to make sure the other fellow can tell they have been eliminated.
Details that could throw doubt on your interpretation must be given, if you know them. You must do the best you can — if you know anything at all wrong, or possibly wrong — to explain it. If you make a theory, for example, and advertise it, or put it out, then you must also put down all the facts that disagree with it, as well as those that agree with it. There is also a more subtle problem. When you have put a lot of ideas together to make an elaborate theory, you want to make sure, when explaining what it fits, that those things it fits are not just the things that gave you the idea for the theory; but that the finished theory makes something else come out right, in addition.
In summary, the idea is to try to give all of the information to help others to judge the value of your contribution; not just the information that leads to judgment in one particular direction or another.Richard Feynman
In general we look for a new law by the following process. First we guess it. Then we compute the consequences of the guess to see what would be implied if this law that we guessed is right. Then we compare the result of the computation to nature, with experiment or experience, compare it directly with observation, to see if it works. If it disagrees with experiment it is wrong. In that simple statement is the key to science. It does not make any difference how beautiful your guess is. It does not make any difference how smart you are, who made the guess, or what his name is – if it disagrees with experiment it is wrong. That is all there is to it.
Richard Feynman
Curl, Robert
Currie, Edwina
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z