Sunday, December 22, 2024 Text is available under the CC BY-SA 3.0 licence.

Fritjof Capra

« All quotes from this author
 

The realization that systems are integrated wholes that cannot be understood by analysis was even more shocking in physics than in biology. Ever since Newton, physicists had believed that all physical phenomena could be reduced to the properties of hard and solid material particles. In the 1920s, however, quantum theory forced them to accept the fact that the solid material objects of classical physics dissolve at the subatomic level into wavelike patterns of probabilities. These patterns, moreover, do not represent probabilities of things, but rather probabilities of interconnections. The subatomic particles have no meaning as isolated entities but can be understood only as interconnections, or correlations, among various processes of observation and measurement. In other words, subatomic particles are not “things” but interconnections among things, and these, in turn, are interconnections among other things, and so on. In quantum theory we never end up with any “things”; we always deal with interconnections.
--
p.30

 
Fritjof Capra

» Fritjof Capra - all quotes »



Tags: Fritjof Capra Quotes, Authors starting by C


Similar quotes

 

Does life in some way make use of the potentiality for vast quantum superpositions, as would be required for serious quantum computation? How important are the quantum aspects of DNA molecules? Are cellular microtubules performing some essential quantum roles? Are the subtleties of quantum field theory important to biology? Shall we gain needed insights from the study of quantum toy models? Do we really need to move forward to radical new theories of physical reality, as I myself believe, before the more subtle issues of biology — most importantly conscious mentality — can be understood in physical terms? How relevant, indeed, is our present lack of understanding of physics at the quantum/classical boundary? Or is consciousness really “no big deal,” as has sometimes been expressed?
It would be too optimistic to expect to find definitive answers to all these questions, at our present state of knowledge, but there is much scope for healthy debate...

 
Roger Penrose
 

In the philosophy of Democritus the atoms are eternal and indestructible units of matter, they can never be transformed into each other. With regard to this question modern physics takes a definite stand against the materialism of Democritus and for Plato and the Pythagoreans. The elementary particles are certainly not eternal and indestructible units of matter, they can actually be transformed into each other. As a matter of fact, if two such particles, moving through space with a very high kinetic energy, collide, then many new elementary particles may be created from the available energy and the old particles may have disappeared in the collision. Such events have been frequently observed and offer the best proof that all particles are made of the same substance: energy. But the resemblance of the modern views to those of Plato and the Pythagoreans can be carried somewhat further. The elementary particles in Plato's Timaeus are finally not substance but mathematical forms. "All things are numbers" is a sentence attributed to Pythagoras. The only mathematical forms available at that time were such geometric forms as the regular solids or the triangles which form their surface. In modern quantum theory there can be no doubt that the elementary particles will finally also be mathematical forms but of a much more complicated nature. The Greek philosophers thought of static forms and found them in the regular solids. Modern science, however, has from its beginning in the sixteenth and seventeenth centuries started from the dynamic problem. The constant element in physics since Newton is not a configuration or a geometrical form, but a dynamic law. The equation of motion holds at all times, it is in this sense eternal, whereas the geometrical forms, like the orbits, are changing. Therefore, the mathematical forms that represent the elementary particles will be solutions of some eternal law of motion for matter. This is a problem which has not yet been solved.

 
Werner Heisenberg
 

The quantum theory, as it is now constituted, presents us with a very great challenge, if we are at all interested in such a venture, for in quantum physics there is no consistent notion at all of what the reality may be that underlies the universal constitution and structure of matter. Thus, if we try to use the prevailing world view based on the notions of particles, we discover that the 'particles' (such as electrons) can also manifest as waves, that they move discontinuously, that there are no laws at all that apply in detail to the actual movements of individual particles and that only statistical predictions can be made about large aggregates of such particles. If on the other hand we apply the world view in which the world is regarded as a continuous field, we find that this field must also be discontinuous, as well as particle-like, and that it is as undermined in its actual behaviour as is required in the particle view of relation as a whole.

 
David Bohm
 

It seems probable to me that God, in the beginning, formed matter in solid, massy, hard, impenetrable, moveable particles, of such sizes and figures, and with such other properties, and in such proportions to space, as most conduced to the end for which He formed them; and that these primitive particles, being solids, are incomparably harder than any porous bodies compounded of them, even so very hard as never to wear or break in pieces; no ordinary power being able to divide what God had made one in the first creation. While the particles continue entire, they may compose bodies of one and the same nature and texture in all ages: but should they wear away or break in pieces, the nature of things depending on them would be changed.

 
Isaac Newton
© 2009–2013Quotes Privacy Policy | Contact