This art, which I call the art of persuading, and which, properly speaking, is simply the process of perfect methodical proofs, consists of three essential parts: of defining the terms of which we should avail ourselves by clear definitions, of proposing principles of evident axioms to prove the thing in question; and of always mentally substituting in the demonstrations the definition in the place of the thing defined.
Blaise Pascal
» Blaise Pascal - all quotes »
Rules for Demonstrations. I. Not to undertake to demonstrate any thing that is so evident of itself that nothing can be given that is clearer to prove it. II. To prove all propositions at all obscure, and to employ in their proof only very evident maxims or propositions already admitted or demonstrated. III. To always mentally substitute definitions in the place of things defined, in order not to be misled by the ambiguity of terms which have been restricted by definitions.
Blaise Pascal
Rules necessary for demonstrations. To prove all propositions, and to employ nothing for their proof but axioms fully evident of themselves, or propositions already demonstrated or admitted; Never to take advantage of the ambiguity of terms by failing mentally to substitute definitions that restrict or explain them.
Blaise Pascal
A few rules include all that is necessary for the perfection of the definitions, the axioms, and the demonstrations, and consequently of the entire method of the geometrical proofs of the art of persuading.
Blaise Pascal
If we wish to express our ideas in terms of the concepts synthetic and analytic, we would have to point out that these concepts are applicable only to sentences that can be either true of false, and not to definitions. The mathematical axioms are therefore neither synthetic nor analytic, but definitions. ...Hence the question of whether axioms are a priori becomes pointless since they are arbitrary.
Hans Reichenbach
Rules for Axioms. I. Not to omit any necessary principle without asking whether it is admittied, however clear and evident it may be. II. Not to demand, in axioms, any but things that are perfectly evident in themselves.
Blaise Pascal
Pascal, Blaise
Passeroni, Giancarlo
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z