Monday, December 23, 2024 Text is available under the CC BY-SA 3.0 licence.

Bertrand Russell

« All quotes from this author
 

To choose one sock from each of infinitely many pairs of socks requires the Axiom of Choice, but for shoes the Axiom is not needed.
--
As quoted in Williams' Weighing the Odds: A Course in Probability and Statistics (2001), p. 498

 
Bertrand Russell

» Bertrand Russell - all quotes »



Tags: Bertrand Russell Quotes, Authors starting by R


Similar quotes

 

Whenever we write an axiom, a critic can say that the axiom is true only in a certain context. With a little ingenuity the critic can usually devise a more general context in which the precise form of the axiom doesn't hold. [...] There simply isn't a most general context.

 
John McCarthy
 

His mother had often said, "When you choose an action, you choose the consequences of that action." She had emphasized the corollary of this axiom even more vehemently: when you desired a consequence you had damned well better take the action that would create it.

 
Lois McMaster Bujold
 

It is remarkable that this generalization of plane geometry to surface geometry is identical with that generalization of geometry which originated from the analysis of the axiom of parallels. ...the construction of non-Euclidean geometries could have been equally well based upon the elimination of other axioms. It was perhaps due to an intuitive feeling for theoretical fruitfulness that the criticism always centered around the axiom of parallels. For in this way the axiomatic basis was created for that extension of geometry in which the metric appears as an independent variable. Once the significance of the metric as the characteristic feature of the plane has been recognized from the viewpoint of Gauss' plane theory, it is easy to point out, conversely, its connection with the axiom of parallels. The property of the straight line as being the shortest connection between two points can be transferred to curved surfaces, and leads to the concept of straightest line; on the surface of the sphere the great circles play the role of the shortest line of connection... analogous to that of the straight line on the plane. Yet while the great circles as "straight lines" share the most important property with those of the plane, they are distinct from the latter with respect to the axiom of the parallels: all great circles of the sphere intersect and therefore there are no parallels among these "straight lines". ...If this idea is carried through, and all axioms are formulated on the understanding that by "straight lines" are meant the great circles of the sphere and by "plane" is meant the surface of the sphere, it turns out that this system of elements satisfies the system of axioms within two dimensions which is nearly identical in all of it statements with the axiomatic system of Euclidean geometry; the only exception is the formulation of the axiom of the parallels. The geometry of the spherical surface can be viewed as the realization of a two-dimensional non-Euclidean geometry: the denial of the axiom of the parallels singles out that generalization of geometry which occurs in the transition from the plane to the curve surface.

 
Hans Reichenbach
 

Professor Klein then speaks of "that artistic finish that we admire in Euclid's Elements," and mentions Allman's important historical work. I heartily concur in this estimate of Euclid, and desire to contrast it with the error of Charles S. Peirce, in the Nation, where he speaks of "Euclid's proof (Elements Bk. I., props. 16 and 17)" as "really quite fallacious, because it uses no premises not as true in the case of spherics." Our bright American seems to have forgotten Euclid's Postulate 6 (Axiom 12 in Gregory, Axiom 9 in Heiberg), "Two straight lines cannot enclose a space;" that is, two straights having crossed never recur.

 
Euclid
 

Professor Klein then speaks of "that artistic finish that we admire in Euclid's Elements," and mentions Allman's important historical work. I heartily concur in this estimate of Euclid, and desire to contrast it with the error of Charles S. Peirce, in the Nation, where he speaks of "Euclid's proof (Elements Bk. I., props. 16 and 17)" as "really quite fallacious, because it uses no premises not as true in the case of spherics." Our bright American seems to have forgotten Euclid's Postulate 6 (Axiom 12 in Gregory, Axiom 9 in Heiberg), "Two straight lines cannot enclose a space;" that is, two straights having crossed never recur.

 
Charles Sanders Peirce
© 2009–2013Quotes Privacy Policy | Contact