The reciprocal relationship of epistemology and science is of noteworthy kind. They are dependent on each other. Epistemology without contact with science becomes an empty scheme. Science without epistemology is — insofar as it is thinkable at all — primitive and muddled. However, no sooner has the epistemologist, who is seeking a clear system, fought his way through to such a system, than he is inclined to interpret the thought-content of science in the sense of his system and to reject whatever does not fit into his system. The scientist, however, cannot afford to carry his striving for epistemological systematic that far. He accepts gratefully the epistemological conceptual analysis; but the external conditions, which are set for him by the facts of experience, do not permit him to let himself be too much restricted in the construction of his conceptual world by the adherence to an epistemological system. He therefore must appear to the systematic epistemologist as a type of unscrupulous opportunist: he appears as realist insofar as he seeks to describe a world independent of the acts of perception; as idealist insofar as he looks upon the concepts and theories as free inventions of the human spirit (not logically derivable from what is empirically given); as positivist insofar as he considers his concepts and theories justified only to the extent to which they furnish a logical representation of relations among sensory experiences. He may even appear as Platonist or Pythagorean insofar as he considers the viewpoint of logical simplicity as an indispensible and effective tool of his research.
--
Contribution in Albert Einstein: Philosopher-Scientist, P.A. Schilpp, ed. (The Library of Living Philosophers, Evanston, IL (1949), p. 684). Quoted in Einstein's Philosophy of Science.Albert Einstein
» Albert Einstein - all quotes »
Intelligence has two parts, which we shall call the epistemological and the heuristic. The epistemological part is the representation of the world in such a form that the solution of problems follows from the facts expressed in the representation. The heuristic part is the mechanism that on the basis of the information solves the problem and decides what to do.
[...]
The right way to think about the general problems of metaphysics and epistemology is not to attempt to clear one's own mind of all knowledge and start with 'Cogito ergo sum' and build up from there. Instead, we propose to use all of our knowledge to construct a computer program that knows. The correctness of our philosophical system will be tested by numerous comparisons between the beliefs of the program and our own observations and knowledge.John McCarthy
Now - how can we possibly examine something we use all the time and presuppose in every statement? How can we criticize the terms in which we habitually express our observations? Let us see! The first step in our criticism of commonly-used concepts is to create a measure of criticism, something with which these concepts can be compared. Of course, we shall later want to know a little more about the measuring stick itself; for example, we shall want to know whether it is better than, or perhaps not as good as, the material examined. But in order for this examination to start there must be a measuring-stick in the first place. Therefore, the first step in our criticism of customary concepts and customary reactions is to step outside the circle and either to invent a new conceptual system, for example a new theory, that clashes with the most carefully established observational results and confounds with the most plausible theoretical principles, or to import such a system from outside science, from religion, from mythology , from the ideas of incompetents, or the ramblings of madmen. This step is, again, counter-inductive, Counter-induction is thus both a fact' - science could not exist without it - and a legitimate and much needed move in the game of science.
Paul Karl Feyerabend
What is a system? A system is a network of interdependent components that work together to try to accomplish the aim of the system. A system must have an aim. Without an aim, there is no system. The aim of the system must be clear to everyone in the system. The aim must include plans for the future. The aim is a value judgment. (We are of course talking here about a man-made system.)
W. Edwards Deming
I do not see any sense in continuing to skirmish on a battlefield where I can never hope to win. The Cambridge system is effectively designed to prevent one ever establishing a directed policy — key decisions can be upset by ill-informed and politically motivated committees. To be effective in this system one must for ever be watching one's colleagues, almost like a Robespierre spy system. If one does so, then of course little time is left for any real science.
Fred Hoyle
Science Of Energetics. Although the mechanical hypothesis just mentioned may be useful and interesting as a means of anticipating laws, and connecting the science of thermodynamics with that of ordinary mechanics, still it is to be remembered that the science of thermodynamics is by no means dependent for its certainty on that or any other hypothesis, having been now reduced, to a system of principles, or general facts, expressing strictly the results of experiment as to the relations between heat and motive power. In this point of view the laws of thermodynamics may be regarded as particular cases of more general laws, applicable to all such states of matter as constitute Energy, or the capacity to perform work, which more general laws form the basis of the science of energetics, — a science comprehending, as special branches, the theories of motion, heat, light, electricity, and all other physical phenomena.
William John Macquorn Rankine
Einstein, Albert
Eisenhower, Dwight D.
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z