Saturday, November 23, 2024 Text is available under the CC BY-SA 3.0 licence.

William - a.k.a. Lord Kelvin Thomson

« All quotes from this author
 

The beauty and clearness of the dynamical theory, which asserts heat and light to be modes of motion, is at present obscured by two clouds. I. The first came into existence with the undulatory theory of light, and was dealt with by Fresnel and Dr. Thomas Young; it involved the question, how could the earth move through an elastic solid, such as essentially is the luminiferous ether? II. The second is the Maxwell–Boltzmann doctrine regarding the partition of energy.
--
From a 1900, April 27, Royal Institution lecture. Lord Kelvin, Nineteenth Century Clouds over the Dynamical Theory of Heat and Light, Philosophical Magazine, Sixth Series, 2, 1–40 (1901). Science 100 Years Agotwo clouds

 
William - a.k.a. Lord Kelvin Thomson

» William - a.k.a. Lord Kelvin Thomson - all quotes »



Tags: William - a.k.a. Lord Kelvin Thomson Quotes, Authors starting by T


Similar quotes

 

I adopt Mr. Darwin's hypothesis, therefore, subject to the production of proof that physiological species may be produced by selective breeding; just as a physical philosopher may accept the undulatory theory of light, subject to the proof of the existence of the hypothetical ether; or as the chemist adopts the atomic theory, subject to the proof of the existence of atoms; and for exactly the same reasons, namely, that it has an immense amount of primâ facie probability: that it is the only means at present within reach of reducing the chaos of observed facts to order; and lastly, that it is the most powerful instrument of investigation which has been presented to naturalists since the invention of the natural system of classification and the commencement of the systematic study of embryology.

 
Thomas Henry Huxley
 

I adopt Mr. Darwin's hypothesis, therefore, subject to the production of proof that physiological species may be produced by selective breeding; just as a physical philosopher may accept the undulatory theory of light, subject to the proof of the existence of the hypothetical ether; or as the chemist adopts the atomic theory, subject to the proof of the existence of atoms; and for exactly the same reasons, namely, that it has an immense amount of primâ facie probability: that it is the only means at present within reach of reducing the chaos of observed facts to order; and lastly, that it is the most powerful instrument of investigation which has been presented to naturalists since the invention of the natural system of classification and the commencement of the systematic study of embryology.

 
Charles Darwin
 

It appears, from all that precedes, reasonably certain that if there be any relative motion between the earth and the luminiferous ether, it must be small; quite small enough entirely to refute Fresnel's explanation of aberration.

 
Albert Abraham Michelson
 

One thing leads to another, and soon you are searching for answers to basic questions.
Another time during lectures on Classical Logic, we were introduced to an “experimentum crucis”. It was illustrated by the deciding experiment of Fizeau on the speed of light in water as compared to its speed in air. Since wave theory predicts that speed in water is less, and corpuscular theory (with point particles) predicts it would be faster, this is supposed to have selected the wave theory is correct. But then how would one accommodate the photoelectric effect? Then it turns out that if the “corpuscle” of light had a finite size, corpuscular theory also predicts lower speed of light in water. But then one can ask how come photoelectric emission being prompt even in feeble light, how could the energy of a photon spread over ?(?/2)2 act as a whole and liberate a single photoelectron! This leads us to question the square of the amplitude being interpreted as the probability of the particle being formed in the immediate vicinity. How do probabilities enter quantum mechanics? Thus the questions (and the quest) go on.

 
George Sudarshan
© 2009–2013Quotes Privacy Policy | Contact