Why do you want to come into physics? All is done and understood.
--
as an advice to Max Planck not to study physics, by Anton Z. Capri, Quips, Quotes and Quanta. World Scientific (2007). p. 1. ISBN 9812709207
--
a similar advice has been given by Philipp von Jolly, as related by Max Planck in his lecture Vom Relativen zum Absoluten (December 1, 1924).Gustav Kirchhoff
» Gustav Kirchhoff - all quotes »
Some years ago, I wrote a book called The Emperor's New Mind and that book was describing a point of view I had about consciousness and why it was not something that comes about from complicated calculations. So we are not exactly computers. There's something else going on and the question of what this something else was would depend on some detailed physics and so I needed chapters in that book, which describes the physics as it is understood today. Well anyway, this book was written and various people commented to me and they said perhaps I could use this book for a course Physics for Poets or whatever it is if it didn't have all that contentious stuff about the mind in that. So I thought, well, that doesn't sound too hard, all I'll do is get out the scissor out and snip out all the bits, which have something to do with the mind. The trouble is that if I did that — and I actually didn't do it — the whole book fell to pieces really because the whole driving force behind the book was this quest to find out what could it be that constitutes consciousness in the physical world as we know it or as we hope to know it in future
Roger Penrose
The realization that systems are integrated wholes that cannot be understood by analysis was even more shocking in physics than in biology. Ever since Newton, physicists had believed that all physical phenomena could be reduced to the properties of hard and solid material particles. In the 1920s, however, quantum theory forced them to accept the fact that the solid material objects of classical physics dissolve at the subatomic level into wavelike patterns of probabilities. These patterns, moreover, do not represent probabilities of things, but rather probabilities of interconnections. The subatomic particles have no meaning as isolated entities but can be understood only as interconnections, or correlations, among various processes of observation and measurement. In other words, subatomic particles are not “things” but interconnections among things, and these, in turn, are interconnections among other things, and so on. In quantum theory we never end up with any “things”; we always deal with interconnections.
Fritjof Capra
The realization that systems are integrated wholes that cannot be understood by analysis was even more shocking in physics than in biology. Ever since Newton, physicists had believed that all physical phenomena could be reduced to the properties of hard and solid material particles. In the 1920s, however, quantum theory forced them to accept the fact that the solid material objects of classical physics dissolve at the subatomic level into wavelike patterns of probabilities. These patterns, moreover, do not represent probabilities of things, but rather probabilities of interconnections. The subatomic particles have no meaning as isolated entities but can be understood only as interconnections, or correlations, among various processes of observation and measurement. In other words, subatomic particles are not “things” but interconnections among things, and these, in turn, are interconnections among other things, and so on. In quantum theory we never end up with any “things”; we always deal with interconnections.
Fritjof Capra
On the side of physics, there were a few key figures in Oxford who realized, in all probability unlike the majority of their colleagues in the physics department, that physics without interpretation is only part of the story, and that theories like quantum mechanics need careful foundational reflection.
Harvey (philosopher) Brown
This is not what I thought physics was about when I started out: I learned that the idea is to explain nature in terms of clearly understood mathematical laws; but perhaps comparisons are the best we can hope for.
Hans Christian von Baeyer
Kirchhoff, Gustav
Kirchner, Cristina Fernandez de
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z