If physics leads us today to a world view which is essentially mystical, it returns, in a way, to its beginning, 2,500 years ago. [...] This time, however, it is not only based on intuition, but also on experiments of great precision and sophistication, and on a rigorous and consistent mathematical formalism.
--
Ch. 1, Modern Physics, p. 19Fritjof Capra
» Fritjof Capra - all quotes »
In 1925, the world view of physics was a model of a great machine composed of separable interacting material particles. During the next few years, Schrodinger and Heisenberg and their followers created a universe based on super imposed inseparable waves of probability amplitudes. This new view would be entirely consistent with the Vedantic concept of All in One.
Werner Heisenberg
The unity and continuity of Vedanta are reflected in the unity and continuity of wave mechanics. In 1925, the world view of physics was a model of a great machine composed of separable interacting material particles. During the next few years, Schrodinger and Heisenberg and their followers created a universe based on super imposed inseparable waves of probability amplitudes. This new view would be entirely consistent with the Vedantic concept of All in One.
Erwin Schrodinger
The quantum theory, as it is now constituted, presents us with a very great challenge, if we are at all interested in such a venture, for in quantum physics there is no consistent notion at all of what the reality may be that underlies the universal constitution and structure of matter. Thus, if we try to use the prevailing world view based on the notions of particles, we discover that the 'particles' (such as electrons) can also manifest as waves, that they move discontinuously, that there are no laws at all that apply in detail to the actual movements of individual particles and that only statistical predictions can be made about large aggregates of such particles. If on the other hand we apply the world view in which the world is regarded as a continuous field, we find that this field must also be discontinuous, as well as particle-like, and that it is as undermined in its actual behaviour as is required in the particle view of relation as a whole.
David Bohm
I learned about X-ray diffraction, neutron scattering, raman scattering, infrared absorption spectroscopy, heat capacity, transport, time-dependent transport, magnetic resonance, electron diffraction, electron energy loss spectroscopy — all the experimental techniques that constitute the eyes and ears of modern solid state physics. As this occurred I slowly became disillusioned with the reductionist ideal of physics, for it was completely clear that the outcome of these experiments was almost always impossible to predict from first principles, yet was right and meaningful and certainly regulated by the same microscopic laws that work in atoms. Only many years later did I finally understand that this truth, which seems so natural to solid state physicists because they confront experiments so frequently, is actually quite alien to other branches of physics and is vigorously repudiated by many scientists on the grounds that things not amenable to reductionist thinking are not physics.
Robert B. Laughlin
Capra, Fritjof
Caratacus
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z