[When I joined the Institute for Advanced Study in Princeton] I did this in the hope that by rubbing elbows with those great atomic physicists and mathematicians I would learn something about living matters. But as soon as I revealed that in any living system there arc more than two electrons, the physicists would not speak to me. With all their computers they could not say what the third electron might do. The remarkable thing is that it knows exactly what to do. So that little electron knows something that all the wise men of Princeton don't, and this can only he something very simple.
--
A Szent-Györgyi (1964) "Teaching and the Expanding Knowledge". Science 146 (1964): 1278-1279; cited in: Ludwig von Bertalanffy (1968) General System Theory. p. 5Albert Szent-Gyorgyi
» Albert Szent-Gyorgyi - all quotes »
When you are famous it is hard to work on small problems. [...] The great scientists often make this error. They fail to continue to plant the little acorns from which the mighty oak trees grow. They try to get the big thing right off. And that isn't the way things go. So that is another reason why you find that when you get early recognition it seems to sterilize you. [...] The Institute for Advanced Study in Princeton, in my opinion, has ruined more good scientists than any institution has created, judged by what they did before they came and judged by what they did after.
Richard Hamming
It would, however, be wrong to think of an electron as a bullet-like structure with tentacles sticking out from its surface. We can calculate the mass of the bullet, and also the mass of the tentacles. The two masses are found to be identical, each agreeing with the known mass of the electron. Thus we cannot take the electron to be bullet plus tentacles... The two pictures do not depict two different parts of the electron, but two different aspects of the electron. They are not additive but alternative; as one comes into play, the other must disappear.
James Jeans
I was wondering what electrons are actually doing when they sit in your hard drive in an old laptop at the back of your closet. I mean, how does an electron sit still — is it like a cartoon M&M learning back in a folding beach chair? Is it like an angry little steel ball bearing hovering there, just waiting to go nuts on protons? What’s the mechanism that starts and stops the electron? Who’s its dungeon master?
Douglas Coupland
if a shower of electrons is shot on to a zinc sulfide screen, a number of flashes are produced - one for each electron - and we may picture the electrons as bullet-like projectiles hitting a target. But if the same shower is made to pass near a suspended magnet, this is found to be deflected as the electrons go by. The electrons may now be pictured as octopus-like structures with tentacles or 'tubes of force' sticking out from it in every direction.
James Jeans
Actually the situation is even more complicated, since a separate tentacle picture is needed for each speed of motion of the electron, the speed being measured relative to the suspended magnet or other object on which the moving electron is to act. ...When the electron is at rest, the tentacles stick out equally in all directions. But an electron which is at rest relative to one magnet may be in motion relative to another, and to discuss the action of the electron on this second magnet we must picture it as having a belt of tentacles round its waist. This shows that we must have a different picture for every speed of relative motion, so that the total number of pictures is infinite, and we cannot form the picture we need unless we know the speed of the electron relative to the object it is about to meet.
James Jeans
Szent-Gyorgyi, Albert
Szilard, Leo
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z