Friday, April 19, 2024 Text is available under the CC BY-SA 3.0 licence.

Johannes Kepler

« All quotes from this author
 

A law explains a set of observations; a theory explains a set of laws. The quintessential illustration of this jump in level is the way in which Newton’s theory of mechanics explained Kepler’s law of planetary motion. Basically, a law applies to observed phenomena in one domain (e.g., planetary bodies and their movements), while a theory is intended to unify phenomena in many domains. Thus, Newton’s theory of mechanics explained not only Kepler’s laws, but also Galileo’s findings about the motion of balls rolling down an inclined plane, as well as the pattern of oceanic tides. Unlike laws, theories often postulate unobservable objects as part of their explanatory mechanism. So, for instance, Freud’s theory of mind relies upon the unobservable ego, superego, and id, and in modern physics we have theories of elementary particles that postulate various types of quarks, all of which have yet to be observed.
--
John L. Casti in "Correlations, Causes, and Chance," Searching for Certainty: How Scientists Predict the Future (1990).

 
Johannes Kepler

» Johannes Kepler - all quotes »



Tags: Johannes Kepler Quotes, Authors starting by K


Similar quotes

 

Einstein is the only figure in the physical sciences with a stature that can be compared with Newton. Newton is reported to have said "If I have seen further than other men, it is because I stood on the shoulders of giants." This remark is even more true of Einstein who stood on the shoulders of Newton. Both Newton and Einstein put forward a theory of mechanics and a theory of gravity but Einstein was able to base General Relativity on the mathematical theory of curved spaces that had been constructed by Riemann while Newton had to develop his own mathematical machinery. It is therefore appropriate to acclaim Newton as the greatest figure in mathematical physics and the Principia is his greatest achievement.

 
Stephen Hawking
 

Heisenberg's name will always be associated with his theory of quantum mechanics, published in 1925, when he was only 23 years old. For this theory and the applications of it which resulted especially in the discovery of allotropic forms of hydrogen, Heisenberg was awarded the Nobel Prize for Physics for 1932.
His new theory was based only on what can be observed, that is to say, on the radiation emitted by the atom. We cannot, he said, always assign to an electron a position in space at a given time, nor follow it in its orbit, so that we cannot assume that the planetary orbits postulated by Niels Bohr actually exist. Mechanical quantities, such as position, velocity, etc. should be represented, not by ordinary numbers, but by abstract mathematical structures called "matrices" and he formulated his new theory in terms of matrix equations.

 
Werner Heisenberg
 

Bohr's investigation had typified what had become a standard procedure in problems of theoretical physics. The first step was to discover the mathematical laws governing certain groups of phenomena; the second was to devise hypothetical models or pictures to interpret these laws in terms of motion or mechanism; the third was to examine in what way these models would behave in other respects, and this would lead to prediction of other phenomena-predictions which might or might not be confirmed when put to the test of experiment. For instance, Newton had explained the phenomena of gravitation in terms of a force of gravitation; a later age had seen the luminiferous ether introduced to explain the propagation of light and, subsequently, the general phenomena of electricity and magnetism; finally Bohr had introduced electronic jumps in an attempt to explain atomic spectra. In each case the models had fulfilled their primary purpose, but had failed to predict further phenomena with accuracy.

 
James Jeans
 

While the new physics was developing in the twentieth century, the mechanistic Cartesian world view and the principles of Newtonian physics maintained their strong influence on Western scientific thinking, and even today many scientists still hold to the mechanistic paradigm, although physicists themselves have gone beyond it.
However, the new conception of the universe that has emerged from modern physics does not mean that Newtonian physics is wrong, or that quantum theory, or relativity theory, is right. Modern science has come to realize that all scientific theories are approximations to the true nature of reality; and that each theory is valid for a certain range of phenomena.

 
Fritjof Capra
 

While the new physics was developing in the twentieth century, the mechanistic Cartesian world view and the principles of Newtonian physics maintained their strong influence on Western scientific thinking, and even today many scientists still hold to the mechanistic paradigm, although physicists themselves have gone beyond it.
However, the new conception of the universe that has emerged from modern physics does not mean that Newtonian physics is wrong, or that quantum theory, or relativity theory, is right. Modern science has come to realize that all scientific theories are approximations to the true nature of reality; and that each theory is valid for a certain range of phenomena.

 
Fritjof Capra
© 2009–2013Quotes Privacy Policy | Contact